What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels.

Energy levels inside every matter are quantized; details depend on the matter

Consider for simplicity only two energy levels: ground and excited states Assume $hv = E_2 - E_1$

Determine the rate for each process

Which process is dominant at equalibrium?

Stimulated emission vs. absorption

$$\frac{R_{21}}{R_{12}} = \frac{B_{21}N_2\rho}{B_{12}N_1\rho} = \frac{N_2}{N_1} = \exp\left(-\frac{E_2 - E_1}{kT}\right) <<1$$

Virtually no possibility for stimulated emission at equalibrium

Which process is dominant at equalibrium?

Stimulated emission vs. spontaneous emission

$$\frac{R_{21}}{R_{sp}} = \frac{B_{21}N_{2}\rho}{A_{21}N_{2}} = \frac{B_{21}}{A_{21}}\rho = \frac{c^{3}}{8\pi\hbar\upsilon^{3}}\frac{8\pi\hbar\upsilon^{3}}{c^{3}\left[\exp\left(\frac{\hbar\upsilon}{kT}\right) - 1\right]} = \frac{1}{\exp\left(\frac{E_{2} - E_{1}}{kT}\right) - 1}$$

$$\stackrel{E_{2}}{\longrightarrow} \lambda = 1.55\mu m$$

$$\frac{R_{21}}{R_{sp}} = \frac{1}{\exp\left(\frac{0.8eV}{0.04eV}\right) - 1} = \frac{1}{4.84 \times 10^{8} - 1} \sim 2 \times 10^{-9}$$

Virtually all photon emission is due to spontaneous emission at equalibrium

How can we induce stimulated emission?

Make N₂ larger than N₁: Break equalibrium and "pump" carriers into E₂ N₂ = N₁ : transparent N₂ > N₁ : population inversion

Which process is useful for optical amplifier?

How can we make stimulated emission dominant over absorption?

Pump carriers into N_2 so that $N_2 > N_1$

Optical Pumping and Electrical Pumping

Optical Pumping: Consider Er

-Pump light is absorbed at E₃ generating carriers

- Carriers at E₃ rapidly transfer to E₂
 → N₂ builds up
- When N₂>N₁ (population inversion), stimulated emission > absorption for 1550nm light

Er can be easily added to core of Silica fiber

→ EDF (Er-Doped Fiber)

	1/IA			_		_	_			_							1	8/VIIIA	
1	1 H 1.008	2/11A	-	P	er	0	di	G	2	b	e		1 3/ IIIA	14/IVA	15/VA	16/VIA 1	7/VIIA	2 He 4.003	
2	3 Li 6.941	4 Be 9.012	1998 Dr. Michael Blaber										5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18	
3	11 Na 22.99	12 Mg 24.30	◄ VIII → 3/IIIB 4/IVB 5/VB 6/VIB 7/VIIB 8 9 10 11/IB 12/IIB 26.98											14 Si 28.09	15 P 30.97	16 S 32.07	17 CI 35.05	18 Ar 39.95	
4	19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.87	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.39	31 Ga 69.72	32 Ge 72.61	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80	
5	37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 TC 98.91	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 126.9	54 Xe 131.3	
6	55 Cs 123.9	56 Ba 137.3	La- Lu	72 Hf 178.5	73 Ta 180.9	74 W 183.8	75 Re 186.2	76 OS 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 П 204.4	82 Pb 207.2	83 Bi 209.0	84 Po 210.0	85 At 210.0	86 Rn 222.0	
7	87 Fr 223.0	88 Ra 226.0	Ac- Lr	104 Db	105 JI	106 Rf	¹⁰⁷ Bh	¹⁰⁸ Hn	109 Mt	110 Uun	111 Uuu								
	s 🕂		-		<i>d</i>								→						
Lanthanides				57 La 138.9	58 Ce 140.1	59 Pr 140.9	60 Nd 144.2	61 Pm 146.9	62 Sm 150.4	63 Eu 152.0	64 Gd 157.2	65 Tb 158.9	66 Dy 162.5	67 Ho 164.9	68 Er 167.3	61 Tm 1/8.9	70 Yb 173.0	71 Lu 175.0	
Actinides				89 Ac 227.0	90 Th 232.0	91 Pa 231.0	92 U 238.0	93 Np 237.0	94 Pu 239.1	95 Am 241.1	96 Cm 244.1	97 Bk 249.1	98 Cf 252.1	99 Es 252.1	100 Fm 257.1	101 Md 258.1	102 No 259.1	103 Lr 262.1	

f

Si lattice structure

Electron energy levels in semiconductors

Electrons in each Si atom have discrete energy levels.

But in Si crystal, energy bands are formed.

Band diagram

For population inversion,

$$\frac{N_2 \cdot P_1}{N_1 \cdot P_2} > 1$$

Electron and hole injection needed.

How to pump electrons and holes into a semiconductor? Forward-bias PN junctior

Light emitting diode (LED)

What determines the color of LED?

Bandgap energies for major LED materials: III-V compound semiconductor

Gain spectrum for SOA

Light source based on stimulated emission?

- Use photons produced by spontaneous emission as initial seeds
- Recycle output photons as seeds for further stimulated emission
- Use mirror for recycling output photons
- → LASER: Light Amplification by Stimulated Emission Radiation

LASER: Optical Amplifier + Mirror

Optical property of gain medium: n, g

$$k = nk_0 + j\frac{g}{2}$$
 g depends on λ and the amount of pumping

Assume there is an initial photon moving in z-direction inside gain medium. What is the condition that this photon is sustained?

→ No loss after one round trip.

$$E_{0} \cdot e^{-jkL} \cdot r \cdot e^{-jkL} \cdot r = E_{0}$$

$$r^{2} \cdot e^{-j2kL} = 1 \qquad e^{-j2kL} = \frac{1}{r^{2}} = \frac{1}{R}$$

$$e^{-j2nk_{0}L}e^{gL} = \frac{1}{R} \qquad \therefore e^{gL} = \frac{1}{R} \text{ and } e^{-j2nk_{0}L} = 1$$

cavity length should be multiples of half wavelength

→ Identical photons are continuously produced at two outputs

Two conditions for lasing: (1) $g_{\text{th}} = \frac{1}{L} \ln \frac{1}{R}$ and (2) $\frac{\lambda}{n} = \frac{2L}{m}$

Lasing peaks (modes) has non-zero linewidth

Various LASERs Any optical gain material with mirrors can form a laser

First Laser: Ruby doped with Cr $(Al_2O_3:Cr^{3+})$

Maiman with first laser in 1960.

Optical Gain: Cr in Al₂O₃ Pump: Flash Lamp

Gas Laser (HeNe)

Semiconductor Laser Structure: PN Junction + Mirror (Cleaved Facets)

Efficient carrier confinement: PIN structure with large E_g for P, N regions

Injected carriers are spread-out => smaller density Double heterojunction: Confinement of Injected carriers

=> larger density

For population inversion,

$$\frac{N_2 \cdot P_1}{N_1 \cdot P_2} > 1$$

Efficient photon confinement: PIN structure with smaller n for P, N regions

Smaller E_g material has larger n ($n_1 > n_2$)

→ Dielectric waveguide!

=> More photons interacting with injected electrons and holes in the active region

→ larger Γ

With $\Gamma < 1$,

$$g_{th} = \frac{1}{L} \ln \frac{1}{R} = \alpha_{m} (\text{mirror loss}) \implies \Gamma g_{th} = \frac{1}{L} \ln \frac{1}{R} = \alpha_{m}$$
$$\frac{\lambda}{n} = \frac{2L}{m} \implies \frac{\lambda}{n_{\text{eff}}} = \frac{2L}{m}; \quad n_{\text{eff}} = \frac{\beta}{k_{0}}$$

Two conditions for lasing: (1)
$$\Gamma g_{\text{th}} = \alpha_{\text{m}} + \alpha_{\text{int}}$$
 and (2) $\frac{\lambda}{n_{\text{eff}}} = \frac{2L}{m}$

There can be several lasing modes: several λ 's satisfying above conditions.

- Multiple values for n_{eff} if there are multiple waveguide modes

Different modes have different n_{eff}

➔ Design for single guided mode.

TE, TM modes?

Problems with multi-mode laser?

→ Modal dispersion even with single-mode fiber

How to make single-mode laser?

Use another type of mirror: Grating

Remember

How to implement diffraction grating within semiconductor laser?

Distributed Feedback (DFB) Laser

Make L very small so that $\Delta\lambda$ larger than gain bandwidth

gain bandwidth: in the order of 10nm

Not easy to fabricate by cleaving

From
$$\alpha_{\rm m} = \frac{1}{L} \ln \frac{1}{R}$$
, too much mirror loss

Solution: Very short cavity vertical lasers with very high reflectivity mirrors (VCSEL: Vertical Cavity Surface Emitting Laser)

In semiconductor fabrication, vertical thickness can be very precisely controlled.

Dielectric mirror can have high reflectivity approaching R=1.

From
$$\alpha_{\rm m} = \frac{1}{L} \ln \frac{1}{R}$$
,
 $\alpha_{\rm m}$ can be made small

if *R* approaches 1.

VCSELs are cheaper because it is more mass-producible.

